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Introduction 

In this chapter, we review research on leveraging eye-tracking information to improve the depth and 
accuracy of student modeling in ITSs. Eye-tracking has been extensively used both in psychology for 
understanding various aspects of human cognition, as well as in HCI for offline evaluation of interface 
design or as an alternative form of intended user input. In recent years, however, eye-tracking has also 
been investigated as a source of information on relevant users states and processes (e.g., attention, 
motivation, meta-cognitive activity) to inform the actions of an ITS. This chapter is an overview of some 
of the recent trends in this area. The overview is structured in two parts. In the first part, we describe 
existing research on investigating eye-tracking data as a direct source of information for student modeling 
and personalized instruction. In this part, we discuss efforts to model the learner at the behavioral, 
cognitive, meta-cognitive and affective level. The second part focuses on research that has used eye-
tracking mainly for the offline analysis of how students attend to specific elements of an ITS interface, in 
order to understand relevant student behaviors and processes. Although this work is less directly related to 
using eye-tracking data in student modeling than the work described in the first part, the results of this 
research provide important insights on additional ways in which student models could leverage gaze-data 
in the future. We conclude the chapter with a discussion of these insights and related recommendations 
for GIFT design. 

Investigating Gaze Data as a Direct Source Of Information for Student 
Modeling 

Leveraging Eye-Tracking Data to Capture and Adapt to Relevant Student Attention 
Behaviors  

The work by Sibert et al. (2000) represents, to our knowledge, the first attempt to use gaze tracking for 
real-time student assessment. Sibert et al. (2000) describe GWGazer Reading Assistant, a system for 
automated reading remediation that tracks a student’s reading patterns and provides support if these 
patterns indicate difficulties in reading a word. In particular, raw gaze data tracked with an unobtrusive, 
camera-based eye-tracker is parsed in real time to identify the word a student is currently reading, based 
on a reading dwell threshold that essentially defines the minimum amount of attention needed to be 
focusing on a word. A second threshold identifies delays in dwelling on a word that may indicate 
difficulty in reading it. When dwelling on a word exceeds this second threshold, the Reading Assistant 
pronounces the word for the student as an aid to reading it. Sibert et al. (2000) describe a preliminary 
informal evaluation of the system, in which eight children age 10‒14 read a series of textual passages 
twice, with the help of the Reading Assistant. Results are presented in terms of changes in reading speed, 
accuracy, and number of prompts received from the first to the second reading of each passage, showing 
improvements on all measures. While these results do not provide any formal conclusions on the 
effectiveness of the Reading Assistant gaze-drive audio prompts, a qualitative post-questionnaire revealed 
that students liked the system and found it easy to use and unobtrusive. Thus, this work can be seen as an 
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encouraging preliminary step in developing learning environments that leverage gaze information to 
provide personalized support to their users. 

Anderson (2002) conducted an early experiment with a gaze-contingent ITS. The study involved a 
research version of the Pump Algebra Tutor (PAT), created specifically for use in eye-tracking studies 
(e.g., the interface elements were spaced out more widely than in the standard tutor). The purpose of the 
experiment was theoretical, namely, to provide an existence proof that paying attention to “fine-grained 
temporal detail of the student’s behavior” can have instructional leverage. More specifically, building on 
the work by Gluck and Anderson (2000), Anderson made the tutor respond to certain instructional 
opportunities that could be identified only through eye-tracking. As one example, if following an error 
message, the student did not read the error message (as revealed through eye-tracking) and did not correct 
the error within 10 seconds, the tutor would give a brief auditory message (“Read the help message”). As 
a second example, when – through eye-tracking – the tutor detected that the student used a problem-
solving strategy that bypassed the instructional objectives, instead of using an intended problem-solving 
strategy, the tutor would give an auditory message suggesting that the student try the intended strategy 
(e.g., one in line with the instructional objectives). This happened in algebra problems in which students 
were given a problem statement describing a story context and were asked to (1) formulate an algebraic 
expression that captures the algebraic relations described in a story context and (2) use that expression to 
calculate specific quantities. On the second step (i.e., calculating quantities by applying the algebraic 
expression), eye-movement data revealed that students sometimes ignored the algebraic expression that 
they had created moments earlier and instead reasoned directly from the problem statement, a slower 
strategy that bypassed the objective of learning to work with algebraic expressions. When the student 
made an error on this type of step without fixating on the expression, the gaze-contingent tutor presented 
another auditory message: “Try using the formula to compute your answer.” With these gaze-contingent 
additions, the tutor helped students reach mastery 20% faster than the standard tutor, an impressive gain 
in efficiency. Further, eye-movement data revealed that students who worked with the gaze-contingent 
tutor attended to the algebraic expression more even before the gaze-contingent tutor would suggest they 
do, evidence that the gaze-contingent messages had the desired result. 

Wang et al. (2006) used eye data to control interaction with the Empathic Software Agents (ESAs) for 
teaching biology. Eye-tracking data were used in two ways: as user input and also to provide information 
for adapting the behavior of the pedagogical agents available in the ESA to the student. Using the gaze 
input, it was possible for the student to choose a topic to study by simply looking at the appropriate area 
on the screen for a pre-defined time period. The student could also reply to a yes/no question by using the 
appropriate eye gesture (moving the eyes vertically for “yes” and horizontally for “no”). By analyzing the 
eye-tracking data and pupil dilation, the system inferred the student’s focus of attention and responded to 
it with affective behavior and/or feedback. When the student showed interest in a particular content by 
dwelling on it, the agent moved to the appropriate location on the screen and provided additional 
information. In addition, the agent also provided positive affective feedback to the student’s attentiveness 
by showing facial expressions conveying happiness. In contrast, if the student appeared to lose 
concentration (e.g., by looking away from the screen), the agent would say something to bring the 
student’s attention back to the screen and showed mild anger. The agents also displayed adaptive 
behaviors based on student’s states inferred primarily from student actions, e.g., providing feedback if a 
student made a mistake, or trying to engage the student if she appeared bored or disengaged because of 
lack of mouse or keyboard input. A small preliminary study with 10 participants revealed a beneficial 
effect of the adaptive agents on the students’ motivation and concentration. The participants reported that 
they were more attentive to additional information and explanations provided by the agent than to the 
other content available in the system. Although the study does not provide sufficient information to 
discriminate which role the gaze-adaptive components played in these evaluations, it shows that, overall, 
an agent relying on both gaze and action data to provide cognitive and affective feedback has good 
potential to enrich a student’s learning experience. 
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D’Mello et al. (2012) provide the only demonstration so far (to the best of our knowledge) that an ITS 
responding to student gaze in real time can improve student learning. (The study by Anderson [2002], 
described above, demonstrated that adding gaze-contingent responses to an ITS can lead to more efficient 
learning, but not that it leads to better learning outcomes.) The study involved Guru, a dialogue system 
with an on-screen tutor agent that engages the student in a tutorial dialogue on instructional material 
displayed on the screen. The system used eye-tracking to evaluate whether the student was paying 
attention, as captured using simple rules (basically, not looking at the tutor agent or the relevant 
instructional material was considered not paying attention). When the student did not pay attention, the 
tutor interjected (in speech) any of the following messages: ‘‘Please pay attention,’’ ‘‘I’m over here you 
know,’’ ‘‘You might want to focus on me for a change,’’ and ‘‘Snap out of it. Let’s keep going.’’ 
D’Mello and colleagues conducted a study comparing tutor versions with and without these gaze-
responsive messages. The results were very interesting. First, there was substantial reorientation of gaze 
after the gaze messages, meaning that the tutor agent did succeed in directing students’ attention back to 
the tutor agent and the lecture. Further, students who worked with the gaze-reactive tutor did better on 
deep learning questions on the post test than students who worked with the version that was not gaze-
reactive. In contrast, learning gains for assertion questions in the pre-post test, which tap into knowledge 
of surface level facts, were higher with the non-gaze-reactive tutor.  

All the work described in this section leverage gaze information to capture momentous student attention 
patterns relevant to improving student interaction with the corresponding learning environments (i.e., 
patterns indicating reading difficulty in the GWGazer Reading Assistant, and patterns indicating attention 
or lack thereof in ESA and Guru). None of this work, however, uses the captured gaze information to 
make higher-level inferences regarding student’s states and processes. In the next section, we review 
work that takes this extra step, using gaze data to model students at the cognitive, meta-cognitive, and 
affective level. 

Leveraging Eye-Tracking Data to Model Student Cognitive, Meta-Cognitive, and 
Affective States 

Conati and Merten (2007) use gaze data to improve the accuracy of a student model designed to enable 
provision of personalized support to learning mathematical functions via exploration of an interactive 
simulation (Adaptive Coach for Exploration [ACE]). Providing this adaptive support is challenging 
because it requires assessing the effectiveness of behaviors for which there is no formal definition of 
correctness. Conati and Merten (2007) tackled the challenge with a probabilistic model that assesses 
exploration effectiveness by integrating information on (1) user actions in ACE, (2) user’s knowledge and 
(3) whether users actually reason about (self-explain) their exploratory actions. Self-explanation – 
generating explanations to oneself to clarify instructional material –is a well-known meta-cognitive skill 
in cognitive science. This work is the first to consider and model self-explanation in the context of 
exploration-based learning. To assess whether a student is self-explaining the outcome of an exploratory 
action, the ACE’s student model combines information on the time the student spent on that action with 
gaze information. This gaze information relates to the occurrence of a simple gaze pattern defined a priori 
as being relevant for learning with this particular simulation: a gaze shift between two panels, one 
showing a function equation and one showing the related plot. The main exploratory action available in 
this simulation is to change either the equation or the plot, and see how the change affects the other 
component. Hence the definition of the aforementioned gaze shift as a relevant pattern to indicate self-
explanation in ACE. A formal evaluation showed that the student model including eye-tracking 
information provides significantly better assessment of both a student’s self-explanation behavior during 
interaction with the simulation, as well as subsequent learning of the relevant mathematical concepts. 
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In the student model described above, Conati and Merten used gaze information related to the occurrence 
of a simple gaze pattern defined a priori as being relevant for learning with their target simulation. Kardan 
and Conati (2012) and Kardan and Conati (to appear) extend this work by looking at a much broader 
range of general eye-tracking features to capture student learning in the context of a different interactive 
simulation (IS). This is an important difference, because pre-defining gaze patterns that indicate learning 
in an IS may not always be easy or possible, due to the often unstructured and open-ended nature of the 
interaction that IS support. Furthermore, such pre-defined patterns are task specific, and may not directly 
transfer to a different IS. In contrast, the approach described in Kardan and Conati (2012) and Kardan and 
Conati (to appear) is more general and can be applied to a variety of ISs. It relies on giving to a classifier 
user model a broad range of standard eye-gaze features that are either task independent or based solely on 
identifying the main components of the target IS interface. Then, it is left to the classifier to identify 
patterns that are indicative of users’ learning with that IS. An evaluation of this approach was performed 
on a data set encoding the gaze data of students working with the constraint satisfaction problem (CSP) 
applet, an IS designed to visualize the workings of the AC3 algorithm for constraint satisfaction on a 
variety of available sample problems. The CSP applet provides various functionalities that allow a student 
to explore the run-time behavior of AC3 at their own pace. The evaluation described by Kardan and 
Conati (2012) showed that a classifier using solely information on a student’s overall attention patterns 
during a complete session with the CSP applet achieves an accuracy of 71% in distinguishing students 
who learned well from the CSP applet from students who did not (where learning was measured via a pre-
test and post-test administered during the study). Furthermore, giving the classifier additional information 
on how students’ attention patterns changed while solving two different problems of increasing difficulty 
further improved classification accuracy to 76%, with better balance in classifying each learner type (i.e., 
high learners vs. low learners, with class accuracy of 77% and 78%, respectively). In a follow-up study, 
Kardan and Conati (2013) showed that a student model for the CSP applet that combines information on 
both gaze data and interface actions outperforms models that rely on either gaze data or action data only. 
Kardan and Conati (to appear) also show that the action+gaze student model for the CSP applet reaches 
and stays above 85% accuracy in classifying a new user as a high versus low learner after seeing 22% of 
the overall interaction data (accuracy above 80% in each class), showing that the model can be used to 
trigger real-time interventions aimed at improving the experience of low learners with the CSP applet. 
Thus, Kardan and Conati’s work provides further evidence of the value of gaze data for user modeling, 
especially for interactions in which it is hard to predefine a priory the learners’ behaviors that should be 
detected as relevant or detrimental for learning. 

Similar results were obtained by Bondareva et al. (2013), when using gaze data only to predict learning 
with a different type of educational environment, namely, a multi-agent ITS (known as Meta-Tutor), that 
scaffolds self-regulated learning (SRL) while students study science material (Azevedo et al., 2012). 
MetaTutor is an adaptive hypermedia learning environment, which includes 38 pages of text and 
diagrams, organized and accessible by an interactive table of contents. Text and diagrams are displayed 
separately in the two central panels of the interface. In addition to providing structured access to relevant 
content, MetaTutor also includes a variety of components designed to scaffold learners’ use of SRL 
processes and their learning of a target science topic, e.g., the human circulatory system. Four 
pedagogical agents (PAs) provide spoken prompts and feedback on various SRL processes. For example, 
one PA assists the student in establishing two learning sub-goals related to the overall learning goal for 
the session. Other SLR processes supported by the PAs include taking notes, writing summaries of the 
viewed content, and evaluating one’s current understanding via interactive quizzes.  

The results in (Bondareva et al., 2013) show that, by leveraging gaze features similar to those used in 
Kardan and Conati (2013), a logistic regression classifier achieves 78% accuracy on predicting student 
learning with Meta-Tutor, after seeing all data from an interaction. Accuracy already reaches 72% 
accuracy after seeing 37% of the data. These results are especially important because, in combination 
with the results in Kardan and Conati (2013), they confirm the importance of gaze data as a predictor of 
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learning across different types of learning environments that can be leveraged for providing real-time 
personalized support to student learning. 

Qu et al. (2005) leveraged gaze data to assess student motivation in the Virtual Factory, an ITS that 
teaches engineering skills (Johnson, Rickel, and Lester, 2000). They started from observations that human 
tutors use information about a learner's motivational states related to effort, confusion, and confidence 
during coaching. Based on these observations, Qu et al. (2005) enhanced an animated pedagogical agent 
with the ability to infer the same motivational factors about students. Information about the student's 
interface actions as well as gaze data tracking a student’s focus and duration of attention were used as 
input for a dynamic Bayesian model, which inferred a learner’s confidence, effort, and confusion during 
interaction the Virtual Factory. This student model was tested through a Wizard of Oz study during which 
students were interacting with a version of the Virtual Factory with the PA’s interventions being directed 
by an experimenter. During the study, log data were collected, along with videos of the students’ face and 
student retrospective self-reports on their motivational states during interaction. Two judges labeled 
replays of each session, synchronized with the videos of the students’ face, for confusion, effort, and 
confidence (as Low, Medium, and High). The student model’s predictions over the three factors were 
compared against both the judges’ generated labels and the students’ self-reports, showing very 
encouraging accuracies between 70% and 82%. Thus, this work provides initial evidence that gaze 
information can help assess student’s affective states in addition to more strictly cognitive factors.  

Off-Line Analysis of Gaze Data to Understand Relevant Student Behaviors 
and Processes. 

Seminal work by Gluck, Anderson, and Douglass (2000) demonstrated that eye-movement data of 
students working with an intelligent tutoring system contain information about students’ cognitive 
processes that is not directly available from the regular stream of student-tutor interaction data (see also 
Anderson, 2002). By performing offline analysis of eye-tracking data obtained with a simplified version 
of the PAT algebra tutor (later named the Algebra Cognitive Tutor), these researchers were able to predict 
certain errors even before they happened. They also showed that eye-tracking data could quite reliably 
disambiguate domain-specific strategies even when they led to the same problem-solving steps. Finally, 
using eye-tracking, it became apparent that students did not attend to as many as 40% of the system’s 
error feedback messages. Although the work by Gluck et al. (2000) did not actually demonstrate a method 
for updating a learner model based on eye-tracking, it is important for this survey because it clearly 
indicates the potential of gaze data as a rich source of information for student modeling, especially the 
strategy disambiguation work, in which inferences from eye-movement data to cognitive processes were 
made quite successfully, which often tends to be rather difficult step, fraught with uncertainty.  

In relation to using gaze data to evaluate whether students attend to an ITS’s adaptive interventions, Muir 
and Conati (2012) performed offline analysis of gaze data to investigate not only if, but also why students 
pay attention to adaptive hints generated by an educational game for math (Prime Climb). Prime Climb 
provides game activities to help students practice skills related to number factorizations, and includes a 
pedagogical agent that helps students learn from these activities by providing individualized hints. These 
hints are based on a student model that assesses whether students are learning during a session with Prime 
Climb, given their game actions. The hints are provided at incremental level of detail when the model 
predicts that student’s knowledge of relevant factorization skills is low. The hints include (1) reminders to 
use available tools that can show how a number is factorized; (2) definitions of relevant factorization 
concepts, accompanied by illustrative examples; and (3) “bottom-out” hints that explicitly explain why a 
student action was correct or incorrect based on factorization knowledge.  
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Providing adaptive hints to support learning during game play is challenging because it requires a trade-
off between fostering learning and maintaining engagement, thus this study aimed at investigating if there 
are factors that impact student attention to hints and that could be leveraged by a student model to make 
these hints more effective. Offline statistical analysis of the gaze data collected from 12 students (age 
10‒11) playing Prime Climb showed that attention to hints is significantly affected by the following 
factors: time of hint (i.e., whether a hint is given in the first or second half of a Prime Climb session), hint 
type, attitude toward receiving help (i.e., whether a student likes receiving help or prefers to do things 
without help), game action correctness and pre-test scores (i.e., how much factorization knowledge the 
student has before starting to play the game). Thus, this offline analysis indicates that capturing these 
factors and student attention to hints in the Prime Climb student model could help tailor hint presentation 
to a specific student. Muir and Conati (2012) also found that increased attention to hints was significantly 
correlated to increased correctness of the subsequent action, showing that further investigation on how to 
increase student attention to hints is a worthwhile endeavor, because it can improve student performance 
with the game, and possibly, help trigger student learning.  

Eye-tracking has also been used to investigate the students’ interaction and usage of OLMs. Since the 
mid-1990s, OLMs have attracted a lot of attention within the research community. Allowing the student 
to access an abstraction of the student model is beneficial in several ways. First, by opening the student 
model, ITSs become more user-friendly. Many projects have shown that students are capable of 
scrutinizing their models in order to explore the adaptive nature of the systems, and are interested in 
seeing the OLMs (Bull et al., 2005; Bull et al., 2007). Moreover, students can be actively involved in the 
modeling process via OLMs, as some systems allow students to challenge or even update their own 
student model. Finally, OLMs encourage students to think about their own knowledge, thus involving the 
student at the meta-cognitive level.  

Eye-tracking has been used in several projects to investigate how students process the information in 
OLMs and evaluate the effectiveness of various types of OLMs. Bull, Cooke, and Mabbott (2007) 
investigate students’ exploration of six different OLMs for the domain of C programming: a ranked list of 
concepts, a textual summary of the student model, a hierarchical lecture structure, a concept hierarchy, 
prerequisite relationships between concepts, and a concept map. In all views except the text summary, 
color is used to indicate knowledge level, with shades of green indicating correct understanding, yellow 
and white indicating low knowledge, and red indicating misconceptions. The participants were asked to 
interact with the OLMs, edit them, and/or persuade the system to change student models. The eye-
tracking sessions lasted for 10 min, and students’ preferences for various OLM views were collected via a 
user questionnaire. Participants generally found the OLMs useful, but had different preferences for which 
OLMs to use, and spent more time viewing misconceptions in their preferred views. Participants spent 
much more time examining their knowledge level (which promotes reflection) using the textual 
representation and ranked concept in comparison to the concept map and the prerequisites. The more 
complicated OLM views resulted in a broader spread of attention; for example, in the concept map 
participants focused less on their knowledge level but instead examined the map itself (i.e., they focused 
on the concepts for which there were insufficient data in their student models). Such more complicated 
OLMs require more effort from the student to gain an overview of the relationships between concepts.  

Mathews et al. (2012) also used gaze data to analyze how students interpret OLMs in the context of EER-
Tutor, a constraint-based ITS that teaches conceptual database design. The participants of the study were 
familiar with EER-Tutor, having used it previously in a database course. The participants viewed four 
different OLM views: concept tag cloud, kiviat graph, concept hierarchy, and tree map. The goal of the 
study was to see whether the students understood the OLMs they were presented. The participants were 
asked three questions about each of the OLM views. For example, participants were asked how much the 
student (represented by a provided OLM view) had learnt about a particular concept. To answer 
questions, participants needed to examine the provided OLM. The eye-tracking data were collected in 
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addition to the answers provided by participants. The efficiency of an OLM view was calculated as the 
quotient of the participant’s score (on the answers) and the product of the time spent viewing the OLM 
view and the number of fixations. A significant difference was found between the efficiencies of the four 
OLM views. Kiviat graphs and concept hierarchies were significantly easier to interpret in comparison to 
tag clouds and tree map according to the efficiency measure. Responses from the user questionnaire also 
identified tag clouds and tree maps as difficult to use to answer precise questions about knowledge levels. 
Participants were asked to rank the four OLM views by their preference: the highest ranked OLM was 
kiviat graph, followed by tag clouds, concept hierarchy, and finally, tree maps. Participants commented 
that the kiviat graph was best for an overall understanding of the student’s knowledge, but that the 
concept hierarchy was valuable for more comprehensive understanding. 

As the last chapter in this section, we report work indicating that an additional type of eye-based data, 
namely, pupillary response, can be leveraged for offline analysis of relevant student states during 
interaction with an ITS. Muldner et al. (2009) looked at the relationship between pupil dilation and 
relevant student affective and meta-cognitive states during interaction with EA-Coach, an ITS that helps 
students learn from analogical problem solving by scaffolding the relevant meta-cognitive skills of self-
explanation and analogical reasoning. A study was conducted with 15 university students who verbalized 
their reasoning and affective states while interacting with the EA-Coach. The collected protocols were 
coded for meta-cognitive events (e.g., student utterances indicating self-explanation, analogical 
reasoning, and other forms of reasoning not falling into the first two categories), as well as for valence of 
affective states (i.e., negative vs. positive affect). The data analysis revealed that type of meta-cognitive 
event significantly affects pupillary response, with pupil size being statistically significantly larger for 
self-explanation events than for other forms of reasoning. Affective valence also had a significant effect 
on pupillary response, with pupil size being statistically significantly smaller during expressions of 
negative affect than during expressions of positive affect. The analysis in Muldner et al. (2009) does not 
provide concrete suggestions on how pupillary response can be used in real time for detection of positive 
versus negative affect or different types of meta-cognitive events. However, the fact that an effect of these 
states on pupillary response was found indicates that pupillary response should be further investigated as 
an additional source of information for student modeling.  

Recommendations and Future Research 

In this chapter, we have discussed existing research relevant to understand the value of eye-tracking data 
in student modeling for ITS. This research indicates that the potential of eye-tracking data for student 
modeling is substantial, because there is evidence that these data can provide information on relevant 
learner states at the behavioral, cognitive, meta-cognitive, and affective level. In particular, work by 
Gluck et al (2000), Conati and Merten (2007), Kardan and Conati (2013), and Bondareva et al. (2013) 
show explicitly that a learner’s eyes sometimes reveal more about cognitive and meta-cognitive processes 
than “overt actions” in a tutor interface. It follows that eye-tracking has the potential to enrich “standard” 
learner modeling techniques (i.e., those tapping only the regular interaction data).  

Further research, however, is necessary to uncover the full extent of this potential. Eye-tracking data have 
so far been used to direct the adaptive behavior of an ITS by capturing only simple gaze patterns 
indicating attention or lack thereof (e.g., Silbert et al., 2000; Anderson, 2002; Wang et al., 2006; D’Mello 
et al., 2012). Student models that leverage gaze data to capture higher level student states such as learning 
(Kardan and Conati, 2012; Kardan and Conati, 2013, Bondareva et al., 2013), meta-cognition in terms of 
self-explanation (Conati and Merten, 2007), and affect in term of motivation (Qu and Johnson, 2005) 
have been developed, validated in terms of accuracy, but not integrated in an ITS. Although it is 
encouraging that positive results in terms of ITS pedagogical effectiveness have already been obtained by 
relying on simple gaze patterns (D’Mello et al., 2012), the next step for research in this area will be to see 
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if and how ITS effectiveness can be improved by relying on more sophisticated gaze-enhanced student 
models.  

Another relevant next step is to exploit some of the insights generated by research on offline analysis of 
gaze data described in this chapter, to extend the usage of gaze data in student modeling and ITSs. For 
instance, although the findings of Gluck et al. (2000) on lack of attention to an ITS’s interventions were 
exploited in Anderson (2002) to devise an ITS that can track this lack of attention and react to it, the work 
of Muir and Conati (2012) on factors that affect attention to hints can be leveraged to further improve 
how an ITS can increase this attention. For instance, Muir and Conati found that attitude toward receiving 
help generates consistent patterns of attention to hints throughout the interaction with the Prime Climb 
edu-game (low attention for those who do not want help, higher attention for those who do). Thus, if a 
student model can “see” that the student is not attending to a hint and knows that the student has a 
negative attitude towards receiving help, it can employ strategies specifically designed to increase 
attention to hints in someone who does not like receiving help, as opposed to using generic prompts as in 
Anderson (2002). It would also be interesting to investigate if and how the results uncovered by Muir and 
Conati (2012) generalize to other types to edu-games and to ITSs at large, and whether other factors may 
affect attention to hints (e.g., affective state, cognitive overload). A similar analysis could also be done for 
gaining more detailed insights on which factors affect attention to OLMs in general, and to specific ways 
to visualize them, especially considering recent results on the impact of individual differences (e.g., 
perceptual abilities and visualization expertise) and on visualization effectiveness (e.g., Conati and 
Maclaren, 2009; Toker et al., 2012). Finally, the results in Muldner et al., (2009) indicate that further 
research should be devoted to investigating how to use information on pupil dilation in student modeling.  

Given that research on eye-tracking and student modeling is at a very early stage, as demonstrated by the 
relatively short list of references at the end of this chapter (we included all relevant articles we could 
find), should authoring tools for ITSs, such as ASPIRE, CTAT, and GIFT, support the use of eye-tracking 
data? If so, how? The answer to these questions depends on whether one views the primary purpose of 
such tools to support ITS research or support development of deployment-ready systems. Both are 
legitimate purposes and truly versatile authoring tools would cover both. Given that resources for 
development are always limited, however, existing tools tend to be more oriented towards either one 
purpose or the other.  

When supporting ITS research is a priority, supporting the use of eye-tracking data would be an 
interesting forward-looking feature for an ITS authoring tool such as GIFT. Given that no best practices 
for employing eye-tracking data in student modeling have emerged yet, the authoring tool should support 
rapid prototyping of different ways of building student models that leverage gaze data. This capability 
would be of tremendous help in studying how eye-tracking might enhance student modeling. A useful 
first step is to enable researchers to do offline analysis of eye-tracking data combined with other key data 
sources, such as tutor log data. At minimum, this would require syncing the different data streams so they 
share common time stamps. A good next step would be to create a versatile architecture that enables the 
student modeling module (and perhaps other key modules of the ITS) to have access, at run time, to data 
from an eye-tracker. Steichen et al. (2013) have recently completed an eye-gaze service architecture to 
address exactly this need for data at run time. Their system, called Eye Movement Data Analysis Toolkit 
in Real Time (EMDAT-RT), is a standalone application that can provide real-time eye-gaze statistics to 
third-party applications through a lightweight web service interface. A client application (e.g., an ITS) can 
simply place a request for eye-gaze analysis (either at regular intervals or specific times), to which the 
service responds with real-time statistics (calculated either starting from a specific start time or for a 
specific time window, e.g., the last 10 seconds). Their system integrates a feature-rich open-source eye-
gaze analysis module (called EMDAT), capable of calculating numerous summative gaze statistics 
beyond those usually provided by the analysis packages that come with commercial eye-trackers. The 
application has been designed to be application-independent, and may therefore be reused for different 
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application domains and purposes, including ITSs. The system (EMDAT-RT) and the internal analysis 
module (EMDAT) are currently compatible with Tobii eye trackers and will be released as open-source 
packages soon. Since both offline and online processing require interfacing with an eye-tracker’s low-
level API, an important goal would also be to make these tools independent of specific eye-tracker 
models or manufacturers, to increase versatility.  
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