
Design Recommendations for Intelligent Tutoring Systems - Volume 1:  Learner Modeling 
 

209 

CHAPTER 19 ‒Intelligent Creativity Support 
Winslow Burleson and Kasia Muldner 

Arizona State University - School of Computing Informatics and Decision Systems Engineering 
 

Introduction 

We present an argument for the advancement of Intelligent Creativity Support (ICS) systems as an 
integrating framework for ITSs, affective computing, and creativity support tools, in a manner that closely 
aligns each of these technologies and research agendas with the componential model of creativity, i.e., 
domain-relevant expertise, intrinsic motivation, and creative thinking style. We also present strategies for 
developing and evaluating student models for the just-in-time assessment of creativity.  

While there are over one hundred definitions of creativity (Amabile, Barsade, Mueller & Staw, 2005), 
there is consensus that it entails a product, idea, or process that is novel and useful (Mayer, 1999). 
Creativity is at the core of all societal advancements. However, it is also present “not only when great 
historical works are born but also whenever a person imagines, combines, alters, and creates something 
new, no matter how small” (Vygotsky, 2004).  

Creativity has been described as the most vital economic resource of our time (Florida, 2002; Kaufman & 
Beghetto, 2009) and the U.S. Council on Competitiveness has indicated that it will be the top factor 
determining America’s success in the 21st century (Robbins & Kegley, 2010; Wince-Smith, 2006). Thus, 
understanding how to foster creativity skills is a crucial societal goal (Tripathi & Burleson, 2012). U.S. 
universities, colleges, and K‒12 school systems can play a fundamental role in producing an innovative 
and creative workforce, by helping students develop such skills (Robbins & Kegley, 2010; Vance, 2007; 
Wince-Smith, 2006). Indeed, the 21st Century Skills initiative (Trilling & Fadel, 2009) and Common Core 
Standards (NGA & CCSSO, 2012) call for teaching creativity, innovation, and deep problem-solving 
abilities.  

Unfortunately, various challenges have hindered the adoption of creativity instruction and practices in 
traditional classrooms (McCorkle, Payan, Reardon & Kling, 2007). For one, few teachers have been 
trained in how to teach creativity (Mack, 1987). More importantly, classroom settings do not enable 
teachers to provide the individualized support needed for effective creativity facilitation. In particular, 
while personalized instruction has tremendous potential to improve student learning (Cohen, Kulik & 
Kulik, 1982; Lepper, 1988), affect (motivation and emotion) (Lepper, 1988; Picard, 1997), and 
metacognitive skills (Bielaczyc, Pirolli & Brown, 1995), providing a human tutor for each student is 
simply not practical. Given these challenges, most of the work thus far reflects anecdotal, descriptive data 
(Ma, 2006; Robbins & Kegley, 2010; Runco, 2004; Scott, Leritz & Mumford, 2004), although some 
exceptions exist (Cheung, Roskams & Fisher, 2006; Clapham, 1997; Dewett & Gruys, 2007).  

Since ITSs can provide large-scale instruction that continuously adapts to learners’ needs (Aleven, 
McLaren, Roll & Koedinger, 2006; Arroyo, Cooper, Burleson, Muldner & Christopherson, 2009; 
Koedinger, Anderson, Hadley & Mark, 1997; Self, 1998; VanLehn et al., 2005), they present a unique 
opportunity to address issues associated with teaching creativity. ITSs have already successfully 
improved domain learning by tracking students’ problem-solving progress, providing tailored help and 
feedback, and selecting appropriate problems (Shute & Psotka, 1996; VanLehn et al., 2005). However, 
ITS have also been criticized for over-constraining student problem solving and over-emphasizing 
shallow procedural knowledge, and therefore not properly addressing 21st century higher-order skills like 
critical thinking and creativity (Trilling & Fadel, 2009).  
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We present strategies for designing a ICS system to foster student creativity during Science, Technology, 
Engineering and Mathematics (STEM) activities. The ICS framework is situated within Amabile’s 
validated and broadly adopted componential model of creativity (1983). Amabile’s model highlights three 
factors within an individual that are needed for creativity: domain knowledge, motivation, and creative 
thinking styles. Moreover, Amabile and others have demonstrated that positive affect contributes to 
creative problem solving (Isen, 2004; Isen, Daubman & Nowicki, 1987), leading to increased intrinsic 
motivation, deeper exploration, and more appropriate outcomes or solutions. Our goal is to have ICS 
integrate and leverage traditionally isolated technological components that are critical to advancing a 
student’s creative capacity (Figure 19-1): (1) domain relevant knowledge supported by ITS; (2) affect 
(motivation and emotion) fostered by Affective Learning Companions (ALCs); and (3) creative thinking 
skills scaffolded by Creativity Support Tools (CSTs). The ICS design can also implicitly account for 
external factors that influence creativity, such as evaluation and time pressure (Amabile, 1983; Amabile et 
al., 2005). The ultimate goal of the ICS strategy is to extend traditional ITS instruction with personalized 
affective support and metacognitive creativity training to improve creativity and learning outcomes.  

 

Figure 19-1. Advancing a new class of cyberlearning technologies, ICS will integrate personalized support 
with Amabile’s componential model of creativity. ICS will combine ITSs to increase domain relevant 

knowledge; ALCs to foster motivation; and CSTs to advance creative thinking styles. 

Student Models for Just-In-Time Assesment 

To provide creativity support tailored to a given student’s needs, an ICS requires a student model 
(VanLehn, 1988) that assesses students’ attributes relevant to creativity processes and outcomes 
throughout their educational activities. To prepare to conduct this research, we have taken steps in this 
direction through related work searches that have highlighted a preliminary set of attributes that we will 
take into account and extend as needed. These attributes are encapsulated by Amabile’s componential 
model of creativity and related research as follows: 
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Domain-Relevant Knowledge. Amabile (1983) shows that the more one knows, the more opportunities 
there are for creativity, something the ICS student model needs to account for in its assessment of a 
student’s creativity. Also related to the assessment of creativity is the fact that its very definition 
involves the production of a novel idea or problem-solving step – the most natural way for a model to 
determine novelty is whether the student already possessed the knowledge related to the idea or step or 
if it was constructed on the spot. 

Affect (Motivation and Emotion). How students feel greatly influences the creativity process and its 
outcomes. Thus, the ICS model will rely on the data from affective sensing devices as well as tutor 
variables to assess states like intrinsic motivation, central to Amabile’s theory (Amabile, 1983), as well 
as other affective states such as frustration (e.g., indicating Stuck!) and flow.  

Metacognition Related to Creative Thinking Styles. The third element of Amabile’s theory pertains to 
what she terms as “creative thinking style,” such as how flexible and imaginative people are in their 
approach to problems, indicating the metacognitive skills required for creativity.  

The ICS creativity student model will represent and infer information related to these three attributes. For 
the modeling of knowledge and metacognition, we will build student models via established techniques 
(e.g., Conati, Gertner & VanLehn, 2002; Corbett, McLaughlin & Scarpinatto, 2000; Mitrovic, 2012; 
Reye, 2004) for modeling of these attributes. Specifically, we will use cognitive and metacognitive task 
analysis to identify fine-grained skills needed to solve a problem (knowledge) and for creativity in general 
(metacognition, including, for instance, divergent thinking). These skills can be computationally 
represented using a rule-based approach that enables the system to automatically model both the target 
solutions and skills sets (Anderson, 1993). This is accomplished by tying parameters to each rule to 
represent the probability that the student knows the corresponding skill, which “fire” when a certain 
threshold is exceeded. In addition, this approach can be used to provide the backbone of a Bayesian 
network that makes the structure of the student knowledge and metacognitive skills explicit, as in (Conati 
et al., 2002). Overall, this probabilistic approach has the advantage of recognizing that modeling student 
knowledge and metacognition is not a black and white process, since there is typically inherent 
uncertainty arising from, for instance, student slips and guesses (Reye, 2004) and/or lack of direct 
evidence on student state of interest (e.g., divergent thinking).  

For the modeling of affect, initially, we will refine our existing student models developed in our work 
(e.g., Arroyo et al., 2009) and use their output as inputs to the ICS creativity model. These models already 
capture attributes that are relevant to the research at hand (e.g., interest, related to intrinsic motivation and 
Flow, frustration) by relying on data from the sensing devices and tutor variables. However, as mentioned 
above, these models do not take into account the uncertainty inherent in assessing affect as other existing 
affective models do (e.g., Conati & Maclaren, 2009) and so we will extend and/or redesign them as 
needed. 

In order to calibrate the main ICS creativity model, as well as its knowledge, affect, and meta-cognition 
sub-models, we will conduct empirical studies to collect data from students (high school and college) as 
they interact with the target tutor while a target set of sensors captures their physiological responses. The 
goal behind these evaluations will be to collect a rich data set that enable us to (1) evaluate the accuracy 
of the student models for capturing the target student attributes and (2) analyze how student actions and 
student affect influence the creative process during open-ended problem solving.  

Model Accuracy: To determine student model accuracy we will compare model output to a gold standard 
(Arroyo et al., 2009; D’Mello & Graesser, 2012; Muldner, Burleson & VanLehn, 2010). In the case of 
student knowledge, this gold standard is typically a test targeting the domain concepts. For affect and 
metacognition, the situation is more complicated since information on students’ feelings and high-level 
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thoughts is not readily available. Thus, we will use a two-prong approach that we have relied on in the 
past: (1) talk-aloud protocol by having students verbalize their thoughts and feelings (e.g., Muldner et al., 
2010) for a subset of the participants (since this is a laborious process that requires transcription and 
analysis of many fine-grained events), and (2) for obtaining affect information, the target system will 
intermittently ask students to report on their emotions (as in Arroyo et al., 2009). Note that these 
techniques are only necessary during model-testing – once the model is calibrated, the self-report prompts 
and talk-aloud protocol are removed. To use these data to assess model accuracy, we will transcribe the 
talk-aloud protocols and identify metacognitive and affective events, and then use these data in 
conjunction with the self-report data to compare against the corresponding submodel output.  

Factors Influencing Creativity: While work in psychology has provided indications of how various 
attributes influence creativity, the technological context of this approach affords opportunities for 
investigating creativity beyond traditional settings. In particular, the PI’s suite of sensors provides a 
unique chance for extending the community’s knowledge on factors that influence creativity. Thus, we 
will rely on the EDM techniques we have used in the past (Muldner, Burleson, Van de Sande & VanLehn, 
2011) and/or adopt additional ones as needed in order to mine the rich data set collected in this phase for 
factors influencing creativity. Specifically, relevant features will be extracted, e.g., affective states, 
productivity during problem solving, effort invested, and used as inputs to EDM techniques, e.g., 
Bayesian network parameter learning (Muldner et al., 2011) andlogistic regression (Cooper et al., 2009; 
Cooper et al., 2010). This will inform how various events contribute to creativity (e.g., a student reported 
frustration and this was related to a low creativity time span) and the relative utility of each event to the 
overall creativity process. We also plan to analyze the relative utility of each sensor (as we did for 
Muldner et al. [2010] and Cooper et al. [2010]) in order to understand which sensors are most valuable for 
creativity assessment as well as what the trade offs are when not all sensors are available.  

Realizing Creativity Support within the GIFT architecture 

As we have described above, ICS requires modeling of a range of student attributes, from domain 
knowledge, to meta-cognition, to affect. Aspects of the GIFT architecture are well aligned to support 
these modeling requirements. In particular, this architecture includes the sensor module that provides an 
interface for incorporating a range of sensing devices, which prior work has been shown to be useful for 
modeling affect (e.g., Arroyo et al., 2009). The input from these devices can then be sent to the GIFT 
learner module in order to map the low level sensor signals to the high level affective states of interest, 
like interest, frustration and/or flow – this module can also be used to assess students’ domain knowledge 
and meta-cognitive skills. The GIFT pedagogical modules can rely on this information to tailor 
interventions in order to support and foster students’ creativity.  

GIFT also includes a domain module, that is used to structure and represent the target domain knowledge 
the student is expected to acquire – this is also relevant to creativity support, as students are expected to 
learn about the domain through creative activities. However, one aspect that is not clear and will need 
future exploration is how well the GIFT domain modules support the more open-ended domains that are 
required for creative endeavors, i.e., domains that afford users opportunities freedom to explore multiple 
solutions, apply divergent thinking and exhibit flexibility in their approaches. Many open-ended domains 
are ill defined in that it is difficult to specify objective criteria for solution evaluation – consequently we 
foresee this as one of the challenges in realizing creativity support in general and within the GIFT 
architecture in particular. 
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Conclusion  

We have discussed the ICS framework and its application to the integration of ITS, affective computing, 
and CST to foster students’ creativity. We have also outlined our research strategies for taking the next 
steps to implement and evaluate this approach, as well as initial considerations on how ICS can be 
realized within the GIFT architecture and challenges associated with doing so. 
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