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Introduction 

ITSs are a large family of technologies that attempt to replicate the experience and learning gains derived 
from one-on-one human tutoring (for recent reviews, see Durlach & Ray, 2011; Graesser, Conley & 
Olney, 2012). While these systems are notoriously diverse in their functionality and construction, several 
authors have created abstract models of ITSs that attempt to capture common components, generally 
accepted to be the learner model (sometimes called the “student model”), the domain model, the tutor 
model, and the user interface (Durlach & Ray, 2011, Elson-Cook, 1993; Graesser et al., 2012; Nkambou, 
Mizoguchi & Bourdeau, 2010; Psotka, Massey & Mutter, 1988; Sleeman & Brown 1982; VanLehn, 2006; 
Woolf, 2008). ITS have also been classified into categories such as model-tracing, example-tracing, 
constraint-based, and dialogue-based tutors. Finally, VanLehn has observed that in describing an ITS, it is 
useful to distinguish between an outer loop of a tutor, which focuses on task selection and macro-
adaptation, and the inner loop which handles in-task interactions and micro-adaptation (VanLehn, 2006).  

Gaps 

These descriptions, however, are largely qualitative descriptions that help researchers understand how a 
given tutor works, but do not help answer quantitative questions about how well they work and ultimately 
how they can be improved. In this chapter, we consider what type of model is needed for answering 
quantitative questions such as the following: 

� What is the gap between the behaviors exhibited by a student and by an expert? 

� At what rate is an ITS closing the gap?  

� How accurately does an ITS assess knowledge, skills, affective states, and other attributes of a 
learner? 

� Among all possible strategies that an ITS has available, which are likely to lead to the most 
learning gains in a given situation?  

� Given two strategies, which leads to desired learning outcomes in the least amount of time?  

� Among the algorithms used by the inner and outer loops of a tutor, where will improvements 
have the greatest impact? 

Most of these questions require measuring two basic quantities about an ITS: Its effectiveness in helping 
learners achieve learning goals and how efficiently it helps students achieve them. To date, effectiveness 
is usually measured in terms of the effect size (Cohen’s d) of learning gains. While aggregate, summative 
measures such as these are useful in determining how well a tutor is working, they do not tell us what 
caused the learning, what is happening as learners use the tutor, or how we can improve the tutor. 
Efficiency, if it is measured at all, is measured by comparing how long it takes to learn concepts or 
behaviors using an ITS to how long it takes to learn them using other instructional means. Once again, 
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this does not help us make improvements because we don’t know what in the tutor causes faster or slower 
learning, and it does not give us any information about an ideal efficiency against which we can measure 
how well a tutor is working. To answer these questions, we need models that enable us to measure learner 
progress and learner rate of progress towards a goal as the tutor operates. The word “measure” is key here 
and implies quantification.  

Exploration of the General Model 

Two Analogies 

Before discussing the quantification problem, we present two analogies that may help explain why a 
formal mathematical model is so important. The first is mechanical and views the problem of tutoring a 
student as analogous to using an autopilot to guide an airplane. As with an ITS, an autopilot is a machine 
substitute for a human. Its goal is to steer an aircraft to a destination, much as the goal of an ITS is to 
guide a learner to a learning objective. The autopilot operates using real-time data on position, 
atmospheric conditions, trim of the aircraft, and other factors and attempts to follow a flight path, which, 
in many cases, has been calculated to maximize efficiency given constraints such as atmospheric 
conditions, terrain, the flight paths of other aircraft, the cost of flying at different altitudes, and the 
ultimate destination. It controls the path by adjusting the ailerons, elevators, rudder, and thrust. 

We can think of the data that defines the current state of an aircraft as analogous to the learner model that 
defines the current state of the learner. But whereas an autopilot continually measures this state and 
follows a path, ITSs typically measure only the initial and end states, or possibly a small number of 
intermediate states. This is not sufficient to quantify the dynamics of an ITS or create the analog of a 
guidance system, which is what we want. 

Of course, a learner is not a machine, and an autopilot does not teach a plane to fly. A better analogy, in 
some ways, is that of a doctor treating a patient. Unlike the autopilot, the doctor, even with modern 
imaging technologies, cannot observe the precise state of a system as complex as the human body. At best 
the doctor can talk to the patient, take the patient’s history (or look it up), conduct a physical examination, 
if necessary order some lab tests, and then, using knowledge of the relationship between clusters of 
symptoms and disease processes, make some guess about what is likely going on. If the doctor finds that 
the patient is unhealthy, the goal is to find a course of treatment, which, if followed, will return the patient 
to a state of health, but since the doctor cannot know the actual state of the patient, in practice, the doctor 
can, at best, monitor the patient’s symptoms, with the expectation they will go away. If this is achieved, 
the patient is presumed to be healthy.  

Although an ITS operates more like an autopilot in the sense that it uses a guidance system to steer 
learners towards a goal, it operates more like a doctor in that it cannot measure the precise state of learner 
and must rely on models of generic learners to interpret the measurements made of any specific 
individual. The ITS must therefore rely on a set of measurements and models of how humans learn to 
infer the state of the learner and prescribe interventions that change the state to a desired one, usually the 
state of an “expert.” However, to discover which interventions should be prescribed, the ITS must have a 
means to observe how (and how much) the inferred learner state changes in response to specific 
interventions. This requires a well-defined mapping between what an ITS can measure and a model of the 
learner state. In today’s practice, it is often difficult to specify what measurements an ITS is taking and 
how those are being translated into a model whose distance from an ideal model can be measured.  
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A Conceptual Model for Tutoring 

Although ITS developers employ different approaches to the problem of guiding human learning, there is 
a great deal of similarity in how their systems function. Conceptually, each ITS uses interactions between 
the student and the system (verbal, written, haptic, biometric, etc.) to infer and alter what the learner 
knows or can do. The ITS observes these interactions and translates them into machine-readable data. 
These data, and possibly other data that are known to the ITS, are used to estimate the learner’s current 
state of knowledge and skill. Knowledge states are typically represented as mastery levels of concepts or 
skills, knowledge components (Koedinger, Corbett & Perfetti, 2012), or a similar set of parameters. In 
addition to using estimates derived from interaction data, some ITSs use the structure of the knowledge 
domain and history of learner’s interactions to make inferences about knowledge states, e.g., by inferring 
that if a learner has demonstrated mastery of concept C or successfully performed task T several times, 
then the learner has also mastered concept D and can perform task U. In some instances, affective states 
are estimated by the ITS in analogous ways. Once the state of the learner is estimated, the ITS uses this 
state to determine what interaction or interactions will next take place. 

It is useful to separate the foregoing description of an ITS into two parts: 

1. State modeling and estimation: Through the use of data collection devices and strategies such as 
emotion sensors, observation of game performance, responses to test questions, and direct 
questions (in the case of dialog-based systems), the system estimates where the learner currently 
lies in a multidimensional model of possible cognitive and affective states.  

2. Evaluation and decision making: Given the model of possible states and the estimate of the 
learner’s current state, the system decides that either (1) the learner’s state is optimal with respect 
to normative expectations, in which case it moves to the next step in the outer loop; or (2) the 
learner’s state is suboptimal, in which case it selects and enacts what it considers to be the best 
intervention in the inner loop. 

State modeling and estimation is the general form of learner modeling, and the second step is the 
functional view of how an ITS uses expert, domain, and pedagogical models to direct its operation based 
on a state model. The cycle of estimation, evaluation, and decision making is repeated until the outer loop 
is exited.  

Ultimately, we want to evaluate how well the tutor is working and how to improve it by improving its 
ability to estimate, evaluate, and change the learner’s state. For this purpose, a slightly more formal 
formulation is needed and can be given as follows:  

1. A learner model (the learner’s present state) can be represented by a (finite) set of state variables. 
Each ITS represents a learner’s state by the values of these variables as they vary over time. In 
more formal terms, there is a space S that represents all possible states of a learner. These states 
can ostensibly include motivational, affective, cognitive, and social factors ranging from mastery 
levels of domain concepts to frustration and motivation levels and certain individual or cultural 
beliefs, which might affect how a learner approaches a task (e.g., see Arroyo et al., 2009; 
D’Mello & Graesser, 2010). In the autopilot analogy, S is the position of the aircraft and in the 
patient analogy, S is the actual state of the patient (which can only be inferred and not directly 
measured).  

2. The state of a learner at any time t is estimated based on a set O of observable variables. These 
are obtained through interactions with the ITS or through data communicated to the ITS from 
other systems, e.g., from a LMS or a game operating in a multi-system framework such as GIFT 
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(Sottilare, 2012). The ITS contains an algorithm a that maps the history of observations about a 
learner to the learner’s current state. This is a function a:O x T → S, where T is the time interval 
during which observations are available. The variables in O can be thought of as the symptoms 
and measurements taken by the doctor, and a is the process the doctor uses to infer the state of the 
patient. (Note: The function a may, in practice, use past values of a in computing the present 
value of a. In other words, the history of estimates of the learner’s state may be used to estimate 
the current state.)  

3. Within S there are target states, and the goal of the ITS is to move the learner’s current state to a 
target state. In the analogies, these are the destination of the aircraft and the state of health of the 
patient, which is a range of states. In an ITS, these may be defined by an expert model or the 
expected behavior of a learner at a particular developmental stage. 

4. The ITS functions by doing the following: 

a. Interacting with the learner. 

b. Measuring the values of variables in O. 

c. Applying a to estimate the learner’s state in S.  

d. Selecting a strategy and associated actions that will move the learner to the target state.  

e. Implementing those actions through (and only through) a set of interactions with the 
learner.  

Observations about this Model and Questions Raised 

All Tutors Trace a Learner Model: Our first observation is that this model is an abstraction of model-
tracing tutors but applies to almost all ITSs. For example, the constraint-based tutors described by 
(Mitrovic, Mayo, Suraweera & Martin, 2001) analyze student answers against a set of constraints to 
determine the student state and take appropriate actions. The example-tracing tutors of (Aleven, Mclaren, 
Sewall & Koedinger, 2009) compare student input to correct and incorrect problem-solving behaviors. 
These constraints and reference examples define points in S that the tutor tries to steer toward or away 
from. Autotutor Lite (Hu et al., 2009) constructs a “learner’s characteristic curve” based on semantic 
comparisons of student input to text that represents expected answers (Robson & Ray, 2012) calculated 
over a series of turns in the inner cycle. Even if an ITS does not have an explicit expert model or domain 
model, it computes some set of state variables and takes actions to move the learner state to a desired 
state. Conceptually, every ITS is a”learner model tracing” tutor. Even if different tutors estimate the 
learner state in different ways and take different actions to change the state, the existence of a 
parameterized state space makes it feasible to quantify and compare tutors on the basis of how learners 
move through this space. 

Optimal Paths: Our second observation is that the ideal ITS moves a learner along a path in S that 
minimizes “cost” (e.g., time to mastery or actual cost of running a simulation) and maximizes “benefit” 
(e.g., how close the learner is to the target state and how long the learner will retain that position.) A good 
test of whether a particular S (i.e., a particular set of parameters used to model the learner state) is viable 
is whether its properties allow for the optimization of paths between any two states with respect to a 
suitable utility function that reflects cost and benefits. This raises the question of whether existing tutors 
have either explicit or implicit state models that are sufficient to do this. In most cases, the answer is 
likely no, and we see this as a limiting factor to making progress in the area.  
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We observe that most existing tutors focus on cognitive (and possibly affective) state variables that 
describe learning goals. These state variables are often represented as levels of competency with respect 
to a set of objectives, knowledge components, or similar constructs, and are implicitly considered to be 
observable (with error) through assessment. In reality, the situation is more complex, more akin to the 
patient analogy than the aircraft analogy.  

If we picture S as a higher dimensional 
object, then the typical tutor works in a 
projection of S onto a discrete structure (see 
Figure 12-1). This results in loss of 
information and makes it impossible to 
measure the distance between two learner 
states because there are many points in S 
that correspond to each point in the discrete 
structure. Moreover, the observability 
assumption means that, as far as the ITS is 
concerned learners never stop between 
observable states. For example, an ITS 
might observe through assessment that a 
learner knows or does not know a fact but 
cannot observe where the learner is in the 
process of learning the fact. No intermediate 
state between “not knowing” and “knowing” 
exists. Even if the discrete structure could be 
used to estimate distances between states in 
S, this further loss of information makes it 
hard to determine the learner’s path through 
S. ITS authors can program the inner and outer loops of a tutor, and they can empirically determine the 
effects of this programming on learning outcomes, but they cannot measure the effects on a utility 
function and cannot determine whether the tutor is close to ideal.8 

Universal Components: An obvious question, whose answer has many implications, is whether there is a 
universal state model. In other words, is there a set of state variables that can be used across multiple 
tutors? Even if a tutor has a different state space, could it be reduced to a common space without suffering 
a significant loss in effectiveness? Or, phrased differently, is there universal learner model that can and 
should be programmed into a framework such as GIFT? As argued in Robson & Barr (Chapter 2 in this 
volume), this is a key question, and it has been asked in various forms by Durlach (2012), Goldberg, 
Holden, Brawner & Sottilare (2011), and others.  

It is doubtful that a universal state space exists if one includes the cognitive dimension since concepts and 
knowledge constructs differ from domain to domain. Even should an “ontology of everything” be 
achievable, it may not be practical to maintain this for all systems at all times. However, if we separate 
these parameters into a domain model (as is done in GIFT), then it is reasonable to ask whether there is a 
formulation of domain models that can be used as a template for any S and, more importantly, whether 
motivational, affective and social parameters are sufficiently domain-independent to allow for a 
manageable set of associated state variables that can be effectively used across most ITSs.  

We do not know the answer to these questions, but we observe that affective, motivational, and social 
components are increasingly being inferred from sensor data and in-system responses (Arroyo et al., 
                                                           
* Surface image from http://en.wikipedia.org/wiki/File:Calabi_yau.jpg.  

Figure 12-1. How an ITS works* 

http://en.wikipedia.org/wiki/File:Calabi_yau.jpg
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2009; Calvo & D’Mello, 2010; D’Mello & Graesser, 2010; Robison, McQuiggan & Lester, 2009; Woolf 
et al., 2009). Since target states in S are usually defined in the cognitive or behavioral domain, these 
components are used primarily as control variables. A universal representation of these components could 
significantly improve the ability of the ITS to use them to effectively guide learning along optimal paths.  

Estimation: The algorithm a maps ITS observations to learner states. In real-world examples, a operates 
on data ranging from simulation and game data (Engineering & Computer Simulations, 2013) to data 
generated by LSA (Wiemer-Hastings, Graesser & Harter, 1998) and by using production rules to analyze 
student answers (Blessing, Gilbert, Ourada & Ritter, 2009). The challenge of transforming observables 
into a state model may be equal to (or greater than) the challenge of determining the state model and is 
just as critical. The ability of an ITS to follow an optimal path is limited by its ability to detect learner 
state.  

Intuitively, an ITS that continually tracks observable state changes along numerous dimensions, including 
multiple micro-adaptations, has a better chance at accurately estimating the learner’s state than an ITS 
which relies on static models, discrete measurements, and only on macro-adaptations. However, a 
relatively small number of observables may be sufficient to account for most of the variance in learner 
state. This has been observed in affect detection (Graesser, Rus, D’Mello & Jackson, 2008) and is a fertile 
area of research that can be supported by GIFT. 

Intervention Selection: Our final observation is that if we understood how different interactions affected 
the trajectory of the learner in S, it would seem relatively straightforward to design algorithms for 
selecting the best interactions. In other words, assuming we can estimate and evaluate reasonably, 
empirical experimentation can be used to come up with a potential set of interventions for which selection 
should be straightforward. Frameworks such as GIFT that can be used to integrate disparate types of 
interventions are ideal for developing this type of understanding, assuming we a reasonable model of S 
and estimation function a.  

Future Research and Recommendations for GIFT 

To be of general significance, the model presented in this chapter must be more precisely formulated and 
tested for its ability to model and provide useful insight into existing ITSs. This requires understanding 
what motivational, affective, cognitive, and social environment data is likely to be represented in S, which 
is perhaps the central problem addressed in this volume. As stated in (Goldberg et al., 2011:10), “While 
we intuitively know that it is better to have more information when we are making decisions to tailor 
instructional feedback and content to individual trainee needs, the influence of specific trainee attributes 
on instructional decisions can be debated. Additional experimentation is needed to quantify the impact of 
trainee attributes.”  

This chapter suggests that as this central question is addressed, it will be important to observe the paths 
traced through the learner state data collected by GIFT and not just the data themselves, and that it will be 
important to test whether the parameters in a learner model can be used to answer optimization questions. 
In addition, this chapter points out that GIFT can be used to empirically evaluate the effects of individual 
interventions, probably at a more granular level than the typical complete ITS, and that a lot of thought 
should be given to observables. Experiments that investigate what data is required to sufficiently 
determine affective states provide good models for analyzing data coming out of simulations, games, and 
sensors with regard to their ability to determine the parameters in S.  
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