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Introduction 

More than 40 years since their origins in the early days of computer-assisted instruction in the 1970s (e.g., 
Carbonell, 1970), considerable progress has been made in developing “intelligent” (computer-based) 
tutoring systems that successfully scaffold learning in specific domains and for specific purposes (for a 
recent review, see Graesser, Conley & Olney [2012]). Frequently cited examples include Cognitive Tutor, 
which supports learning in algebra, geometry, and programming languages (Ritter, Anderson, Koedinger 
& Corbett, 2007); AutoTutor (Graesser, Olney, Haynes & Chipman, 2005; Graesser, Jeon & Dufty, 2008; 
Graesser, Lu et al., 2004), which does the same thing for college-level computer literacy, physics, and 
critical thinking skills; and the so-called “constraint-based” systems developed by Mitrovic’s group in 
New Zealand (Mitrovic, Martin & Suraweera, 2007), which, among other topics, help students learn to 
program in SQL.  

In spite of these advances at local research and development sites, the field has yet to produce a truly 
general-purpose system that is capable of supporting rapid development of high-quality applications 
across a broad range of domains. GIFT, currently under development at the U.S. Army’s Learning in 
Intelligent Tutoring Environments (LITE) Laboratory, is intended to fill this gap. Citing Picard (2006), 
the developers claim that the availability and use of ITSs has been limited by the high cost of 
development, lack of reusability, lack of standards, and “inadequate adaptability to the needs of learners” 
(Sottilare, Brawner, Goldberg & Holden, 2012:1). These systems, they write, tend to be built as “domain-
specific, unique, one-of-a-kind, largely domain-dependent solutions focused on a single pedagogical 
strategy.” GIFT is presented as a solution to this problem. The modular framework and standards built 
into the system could “enhance reuse, support authoring and optimization of CBTS3 strategies for 
learning, and lower the cost and skill set needed for users to adopt CBTS solutions for military training 
and education” (Sottilare et al., 2012:1).  

The development of a general-purpose, domain-specific ITS framework is indeed an important goal, but 
numerous barriers block the way. These include (but are not restricted to) a lack of agreement in the ITS 
community about how the different components of an ITS ought to fit together; what the structure and 
content of the components ought to be; and how knowledge of the world is to be represented, both for 
experts and learners.  

The argument made in this chapter assumes that a general-purpose system will at some point employ an 
open, multiagent architecture, meaning that core functions are carried out by more or less autonomous 
software agents united by a common ACL. Some of these agents will perform simple tasks (such as 
analyzing a learner’s facial expressions), while others will take on more complex ones, such as generating 
appropriate responses to user questions. As an example, here we describe an autonomous software agent 
that produces a turn-by-turn analysis of a user’s discourse moves on two dimensions: relevance and 
novelty (R-N). In the process, it builds what we call a micromodel of the learner’s current state, including 
                                                           
3 Here we use the term ITS to mean the same thing as a computer-based tutoring system (CBTS), a class of adaptive 
educational system (AES). 
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a relevance-novelty measure for single turns and for a series of turns.4 This micromodel allows the R-N 
agent to make assertions about the learner’s current and recent contributions to a conversation—assertions 
which may be broadcast generally or addressed directly to other agents, such as a conversation agent, a 
pedagogical agent, an agent responsible for constructing aggregate learner models from multiple 
micromodels, an agent that analyzes the effectiveness of instructional modules, or, where the ITS 
employs an “open” learner model (Bull, 2004; Bull & Pain, 1995; Kay, 2001; Mitrovic & Martin, 2002), 
an agent responsible for providing access to the learner model through the user interface. 

The Standard Four-Component ITS Model 

As noted elsewhere in this book, it is customary to identify an ITS as consisting of four major 
components, referred to as “models” – the learner model (sometimes called the “student model”); the 
expert domain model; the tutor model, and the user interface (Elson-Cook, 1993; Graesser et al., 2012; 
Nkambou, Mizoguchi & Bourdeau, 2010; Psotka, Massey & Mutter, 1988; Sleeman & Brown 1982; 
VanLehn, 2006; Woolf, 2008). In an ITS where the tutor is capable of mixed-initiative dialog with the 
user (Carbonell, 1970; Allen, Guinn & Horvtz, 1999; Graesser et. al, 2005), the tutor takes the form of an 
intelligent conversation agent, backed by a Dialog Advancer Network (Person, Bautista, Kreuz, Graesser 
& Tutoring Research Group, 2000). Figure 9-1 illustrates the relationship among these four components. 

 

Figure 9-1. Standard ITS components 

In general terms, the learner model represents what the tutor has established to be the learner’s current 
level of knowledge, skill, and affective state, while the expert domain model represents the knowledge 
and skills the learner is supposed to acquire – and has therefore been called the “ideal student model” 
(Corbett, Koedinger & Anderson, 1997). Through interactions with the learner via the user interface, the 
conversation agent, playing the role of the tutor, seeks in some way to bring the learner model in line with 
the expert model. In this sense, the learner model is said to be an “overlay” of the expert model Wenger, 
1987) 

Although the various ITS research and development communities seem to agree that these are the main 
components, the model is really more of a conceptual framework than a working blueprint. In practice, 
different systems employ quite different architectures, data structures, and strategies, reflecting different 
instructional philosophies and purposes (e.g., Nkambou et al., 2010, Schatz & Folsom-Kovarik, 2011). 
While this makes sense locally, the lack of a standard overall system architecture and way of constructing 
the different system components is problematic for a number of reasons. 

For one thing, it means that components that have proven to be effective in one system are not easily 
imported into another, thus limiting progress that might be made through the collective efforts of the 
rapidly expanding network of ITS research and development groups around the world. Also, the lack of a 
standard method of structuring the learner model means that when a learner moves from one system to the 

                                                           
4 Although we refer here to “user” as a “learner,” in fact the agent we describe here is capable of evaluating the 
discourse moves of any interlocutor, including those of another agent. 
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next, the new system must start from scratch in establishing the learner’s history and current state of 
knowledge. To use an analogy from medicine, it is as if different doctors had different languages for 
describing a patient’s health, so, when dealing with a new patient, each doctor would have to reassemble a 
patient’s history from scratch.  

What then, in the absence of a standard architecture and data structure for representing learner and expert 
domain knowledge, is one do to? The 60s-era slogan “If you’re not part of the solution, you’re part of the 
problem” seems relevant here. Specific solutions to general problems of learner modeling ought to be 
crafted in such a way that they are generally useful no matter what environment they are asked to work in. 
To return to the medical records analogy, if we are developing a new procedure for say, measuring pupil 
dilation or “knee-jerk” reflex response, so long as we have a standard way of reporting our results, we 
don’t have to worry about how our “microrecord” fits into the overall structure of the patient’s medical 
record, which can be assembled by someone else. In other words, we can be part of a solution without 
knowing exactly what that solution is.  

The Argument for a Multiagent Architecture 

The notion of an ITS as a multiagent system is not new. Of course, any ITS is a multiagent system in the 
gross sense that there are two autonomous agents at work: the user and intelligent tutor. However, recent 
years have seen an increasing emphasis on development of ITSs with multiagent architectures in the more 
interesting sense that overall system functionality emerges from the collective work of individual 
software agents (Bittencourt et al., 2007; Chen & Mizoguchi, 2004; El Mokhtar En-Naimi, Amami, 
Boukachour, Person & Bertelle, 2012; Lavendelis & Grundspenkis, 2009; Zouhair et al., 2012). Through 
the use of a shared, speech-act-based agent communication framework such as Knowledge Query and 
Manipulation Language (KQML) (Finin, Fritzson, McKay & McEntire, 1994), Foundation for Intelligent 
Physical Agents (FIPA)-ACL (O’Brien & Nicol, 1998), or Java Agent Development Framework (JADE) 
(Bellifemine, Caire, Poggi & Rimassa, 2008), combined with a set of domain-specific ontologies 
(concepts and their relations specific to the system domain), the agents in the system assert beliefs, make 
requests of other agents, deny requests, and so forth, much as human workers in a large collective 
enterprise do (see Chaib‐draa & Dignum, 2002; Kone, Shimazu & Nakajima, 2000).  

For example, in a multiagent ITS, different agents can take on the different tasks of user registration and 
authentication, interfacing with learning management systems, building learner models dynamically, 
monitoring learner affect through the use of various sensing systems, and managing conversations among 
users and other agents. Further, agents with especially complex tasks, such as a conversation agent, may 
be supported by a network of specialized agents dedicated to specific subtasks. Each of these agents can 
have its own internal algorithms, data structures, and local methods of obtaining data. Importantly, as 
long as the agent “knows” the system’s ACL, i.e., can post, send, and read messages in a shared language, 
it doesn’t matter how it is organized internally, in the same way that different sort functions can take the 
same input and produce the same output using different internal algorithms. 

In the remainder of the chapter, we give an example: an agent that is capable of evaluating a learner’s 
discourse moves on two important dimensions: relevance and novelty. Instantiated as a highly specialized 
agent within a multiagent, conversation-based ITS architecture, the R-N agent is capable of making 
assertions about a small but important piece of the learner model (a learner micromodel), information that 
may be of some value to other agents, such as conversation agents and learning model agents, for their 
own purposes. 
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The Problem of Conversational Relevance and Novelty 

Designing a computer program that can carry on a conversation with a human, one of the oldest and 
arguably the hardest challenge in AI, is exactly the sort of problem that lends itself to multiagent 
treatments. For example, different agents may be responsible for converting speech to text, parsing text 
into its grammatical elements, classifying utterances as different kinds of speech acts, and extracting (or 
estimating) meaning through some form of semantic analysis. Other agents, or clusters of agents, can be 
responsible for generating responses in the form of text strings, while still other agents convert the text 
strings into speech, and have them spoken by an animated avatar.  

The agent responsible for generating responses to a user’s utterances (discourse moves) arguably has the 
most complex task and is most likely to benefit from the assistance of simpler agents that can take on 
pieces of it. The task is hard because it is really a special form of mind-reading, requiring an ability to 
continuously create and test theories about an interlocutor’s present state of mind. Bakhtin’s distinction 
between monologic and dialogic discourse (Bakhtin, 1981; Wells, 2007) is a useful way of framing the 
problem. In a conversation that is primarily monologic, the speaker’s purpose is to convey information in 
such a way as to “duplicate one’s own idea in someone else’s mind” (Bakhtin, 1986:69), without the need 
to be concerned about what is already in the listener’s mind, what the listener may be thinking at the 
present moment or in expectation of a particular response. This is the discourse stance of a lecturer. 
Dialogic discourse, on the other hand, is inherently a “social form of thinking” (Wells, 2007:256), a much 
harder form of discourse, at least for machines, in which interlocutors must work to understand each 
other’s “present state,” and thereby arrive at a shared understanding.5 Consider, for example, the 
following exchange: 

A: So, what did you do today? 
B: Attended a physics lecture. 
A: What did you learn? 
B: It was really hot. 

Given such a response, if A is a human speaker, A will assume, on the Gricean principle, that B is a 
cooperative interlocutor; that B’s response must be in some way relevant (Grice, 1975); and that “it” 
refers either to the lecture or the lecture hall. In the former case, “hot” would be an attribute of the lecture, 
representing a positive reaction, implying that speaker B had liked the lecture and possibly learned a lot 
from it. In the latter case, “hot” would be an attribute of the lecture hall, implying an uncomfortable 
temperature. Because the word “hot” is more commonly associated with rooms than lectures, A would 
probably test the latter case first: 

… 
A: So, are you saying the lecture hall was uncomfortable? 
B: Yes. 
A: I’m sorry to hear that. It must have been hard to concentrate. What were you able to learn? 
B: We learned about physics. 
A: Okay, but what about physics? 

                                                           
5 In a paper titled “Why is conversation so easy?” Garrod & Pickering (2004) argue that, for humans, dialog is easier 
than monologue because interlocutors automatically align linguistic representations at various levels (phonological, 
syntactic, semantic, and situational), thus building up a shared workspace. This joint construction of meaning and 
purpose has the effect of distributing the processing load, thus making conversation relatively easy. Humans, as they 
put it, are “designed for dialog.” 
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In order for an intelligent conversation agent to carry on such a conversation, it would need, among many 
other things, to have some knowledge of the world, of the following type: 

1. Lectures are a method of teaching. 

2. Lectures are about something. 

3. A person may learn something from a lecture. 

4. Lectures take place in rooms called lecture halls. 

5. Rooms may be comfortable or uncomfortable. 

6. Humans are sensitive to temperatures that are outside their comfort range. 

7. “Hot” refers to a temperature that is outside a human’s comfort range. 

8. Learning requires concentration.  

9. When a person is uncomfortable, it is hard to learn. 

10. “Hot” is a slang word for something that a human finds attractive… 

and so forth. In other words, A’s ability to judge the relevance of B’s utterance “It was very hot” depends 
very much on a complex set of concepts and relationships.  

However, relevance is not the only important measure of the degree to which a discourse move is felt to 
be cooperative. In addition to the principle of relevance is that of quality (Grice, 1975), which includes 
the assumption that an interlocutor’s move will add something new to the conversation. In the imagined 
conversation considered here… 

Learner (B): We learned about physics. 
Tutor (A): Okay, but what about physics? 

A’s “Okay, but what about physics?” is exactly the right thing to say because B has already reported that 
it was a physics lecture, so of course it was about physics. In other words, B has violated the Gricean 
maxim of quality by failing to make a truly novel contribution.  

So, if it is to possess anything remotely like the intelligence of a human speaker, it seems that an 
intelligent conversation agent must have a way of evaluating both the relevance and novelty of an 
interlocutor’s discourse moves. Admittedly, this is just one part of the problem of natural language 
understanding by a machine, perhaps even a minor part, and so a solution, which itself is likely to be only 
partial, will be worth little if not combined with many others. That said, within a multiagent environment, 
it might be useful to have an agent that is capable of sending messages like:  

json={“target”:”conversation manager”,”learner”:”5021”,”time”:”2013-02-01 
10:45:22 UTC”, “novelty”:” .3”,”relevance”:”.5”} 

or  
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json={“target”:”learner model manager”,”learner”:”1259”, 
“session”:”5”,”date”: “2013-02-01”,”average novelty”:”medium”, “average 
relevance”:”high”} 

where the language is an ACL, the decimals represent Bayesian estimates of likelihood, and the assertions 
are addressed to other agents with a “for your information” (FYI) intention, i.e., the originating agent is 
agnostic as to how other agents will use the information (beliefs) it asserts.6 

An Example from Physics 

As an example, assume that an intelligent tutor is provided with the following instructional script: 

ASK: Suppose a football player is running in a straight line at a constant speed, while carrying a football. Suddenly 
he throws the football straight up, over his head, and keeps running at the same speed. Explain where it will land. 

EXPECTED ANSWER: In accordance with Newton’s first law of motion, the ball will continue to travel in the 
same direction, unless there is an opposing force. In this case, the main opposing force is gravity, but gravity only 
affects the vertical component of the motion vector. It is true that the particles in the air, such as oxygen molecules, 
exert an opposing force, which pushes against the ball in the opposite direction, but this force is very small 
compared to the accelerating force of gravity.  

Now, compare the following two transcripts from an imaginary tutoring session: 

Transcript A 

Tutor: Suppose a football player is running in a straight line at a constant speed, while carrying a 
football. Suddenly he throws the football straight up, over his head, and keeps running at the same speed. 
Explain where it will land. 
Learner A: It will continue along in his direction and come back down where he can catch it. 
Tutor: I agree. But why? 
Learner A: Well, the ball and the runner both have the same forward speed. 
Tutor: Okay...and.... 
Learner A: So when gravity pulls the ball down, it just affects the vertical speed. 
Tutor: What about the horizontal speed? 
Learner A: It remains the same. It’s Newton’s second law of motion. 
Tutor: Do you mean Newton’s first law? 
Learner A: Oh right. First law. 
Tutor: Good. Let’s go on to the next problem. What if, instead of a ball, it’s a balloon? On the moon? 

Transcript B 

Tutor: Suppose a football player is running in a straight line at a constant speed, while carrying a 
football. Suddenly he throws the football straight up, over his head, and keeps running at the same speed. 
Explain where it will land. 

Learner B: i don’t know. somewhere behind him. 
Tutor: Why? 
Learner B: cause it will fall back behind him so he can’t catch it. 

                                                           
6 The syntax used here is JavaScript Object Notation (json), a message format used for communication between 
agents in multiagent systems. See http://www.json.org/. 

http://www.json.org/
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Tutor: Why do you think that? 
Learner B: i just think it will fall behind him 
Tutor: Okay...but why? 
Learner B: cause 
Tutor: Okay, let’s look at that video again.... 

Clearly, there is quite a lot going on here; however, a key difference between the two transcripts is that 
whereas Learner A’s contributions are all relevant (consistent with the expected contribution) and novel 
(providing additional information); in the same sense, only Learner B’s first contribution is novel, and 
none are relevant.7 More generally, the relevance and novelty of given discourse move may be mapped 
onto a Venn diagram such as that shown in  

Figure 9-2. 

 

 

Figure 9-2. Mapping relevance and novelty 

This gives a matrix (Table 9-1) with four quadrants: 

Table 9-1. Novelty and Relevance Matrix 

 Old New 

Relevant O-R 
(Not new but relevant) 

N-R 
(New and relevant) 

Irrelevant O-IR 
(Not new and irrelevant) 

N-IR 
(New but irrelevant) 

Assuming that this kind of information would be useful to other agents (notably the agent handling the 
conversation with the learner), we can now ask how an agent might go about determining the relevance 
and novelty of a given utterance. 

                                                           
7 Note that we are using the term “relevant” here in a special, non-intuitive sense. Whereas a contribution may be 
“relevant” in the sense that it relates in some way to the topic, it is considered irrelevant if it is inconsistent with a 
model answer.  
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Quantitative Measures for Novelty and Relevance 

A rough-and-ready relevance measure for a given learner contribution to a dialog with an intelligent tutor 
can be defined as the extent to which the learner’s answer to a tutor’s question is “semantically similar” to 
the answer the tutor expects. In the same way, a measure of the novelty of the learner’s most recent 
contribution can be defined as the extent to it resembles the learner’s previous contributions to the same 
conversation, i.e., attempts to answer the same question. In other words, if the R-N agent is passed two 
strings ‒ one representing the expected answer and the other the learner’s most recent contribution ‒ then 
it can it can come up with a relevance score using any one of several methods used to compute semantic 
similarity, including Latent Semantic Analysis (LSA; Landauer & Dumais, 1997), Hyperspace Analogue 
to Language (HAL; Burgess, Livesay & Lund, 1996), Latent Dirichlet Allocation (LDA; Blei, Ng & 
Jordan, 2003), Non-Latent Similarity (NLS; Cai et al., 2004); Word Association Space (WAS; Steyvers, 
Shiffrin & Nelson, 2002), and Pointwise Mutual Information (PMI; Recchia & Jones, 2009). For a 
discussion of the use of LSA in ITSs see Hu et al. (2007). 

Also, so long as it knows that the topic has not changed (e.g., the tutor is still prompting for an answer to 
the same question), then, using the same method, it can calculate the semantic similarity of the learner’s 
most recent contribution to her previous contributions. This produces values seens in Table 9-2. 

Table 9-2. Sample relevance and novelty measures 

 Old New 

Relevant 0.4 (O-R) 0.2 (N-R) 

Irrelevant 0.1 (O-IR) 0.3 (N-IR) 

In addition, two other measures are obtained by combining current and previous contributions. A Current 
Relevant Contribution (CRC) score is obtained by adding O-R and N-R (in this case, 0.6), while the CRC 
score combined with all previous CRC scores gives a Total Coverage (TC) score.  

Together, for any given dialog move, these six measures may be viewed as constituting a micromodel of 
the learner’s “current state.” An agent that is capable of evaluating a given dialog move on these measures 
can pass along the micromodel it has built for the use of other agents in the community. For example, in 
Transcript A, an agent’s analysis of Learner A’s contribution “Well, the ball and the runner both have the 
same forward speed” might be communicated as follows:  

json={“target”:”all”,”learner”:”1259”,”input string”:”Well, the ball and the 
runner both have the same forward speed”,”time”:”2013-02-05 11:25:27 
UTC”,”R/N”:”0.3”,”R/O”:”0.4”, “I/N”:”0.28”,”I/O”:”0.01”, 
“CRC”:”0.17”,”TC”:”0.24”} 

...whereas Learner B’s contribution “cause” could yield the following: 

json={“target”:”all”,”learner”:”1147”,”input string”:”cause”,”time”:”2013-02-
05 11:25:27 UTC”,”R/N”:”0.0”, 
“R/O”:”0.0”,”I/N”:”0.0”,”I/O”:”0.10”,”CRC”:”0.04”,”TC”:”0.033”} 

Over a series of moves, the cumulative scores constitute what Hu & Martindale (2008) refer to as a 
Learner Characteristic Curve (LCC), which may be displayed in the form of a set of graphs, as illustrated 
in Figure 9-3.   
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This information, the relevance and novelty of a given utterance, combined with the cumulative relevance 
measures, can be viewed as constituting a small, localized micromodel of the learner’s current cognitive 
state and as such has practical utility. In fact, it is on the same level as micromodels developed by other 
agents in a multiagent ITS community that provides both real-time and historical information about a 
user’s apparent affect. 

 

Figure 9-3. Sample LCC output 

For example, an agent that monitors a learner’s facial expressions might make an assertion in the form: 

json={“target”:”all”,”learner”:”1147”,”facial 
expression”:”puzzled”,”value”:”.3”,”time”:”2013-02-01 10:45:22 UTC”} 

which constitutes a component micromodel of the learner’s affective state. Combined with the preceding 
message from the R-N agent, the conversation manager (more specifically, a response generation agent) 
now has two pieces of evidence to consider, i.e., that the user appears confused and that the novelty and 
relevance measures for the user’s most recent utterance were both low. Given this information, the 
response agent could decide to send a message such as this to an avatar:  

json={“target”:”avatar”,”learner”:”1147”,”output string”:”You seem confused. 
Are you?”,”time”:”2013-02-01 10:45:24”} 

Assuming they have ways of understanding messages such as these, other agents in the system can use 
them for their own purposes. For example, a response generation agent might use the information in the 
first message to generate the turn: 

Learner A: Well, the ball and the runner both have the same forward speed. 
Tutor: Okay...and.... 

and the information in the second message to produce: 

Learner B: cause 
Tutor: Okay, let’s look at that video again.... 

As another example, a pedagogical agent might take an LCC representing repeated non-novel, 
“irrelevant” learner contributions as evidence of a possible misconception. 
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Opening the Model to the Learner 

In a system where the learner model is “open” to the learner (Bull, 2004; Bull & Pain, 1995; Dimitrova et 
al, 2001; Kay, 1997; Mitrovic & Martin, 2002), a user interface agent might use the micromodel to create 
a set of graphs, as in Figure 9-4.   

. 

 

Figure 9-4. Opening the micromodel to the learner  

Giving the learner feedback on the relevance and novelty of her discourse moves in this way could 
conceivably encourage her to focus her attention on maintaining higher levels of relevance and novelty 
than she might otherwise, thereby increasing the likelihood that the conversation will lead to real learning. 

Discussion 

In this chapter, we have explained how a specialized agent within a conversation-based ITS can monitor a 
learner’s discourse moves on two dimensions: novelty and relevance. In this way, over a series of moves, 
it builds up a “micromodel” of the learner’s cognitive state, called a Learner Characteristic Curve (LCC), 
which it can then pass along in the form of messages (assertions of belief) to other agents, assuming a 
common ACL. As a result, the agent can contribute to the solutions of larger problems without needing to 
know what the solution is. Importantly, such an agent is both reusable and replaceable. It is reusable in 
the sense that it can be used in any number of different ITSs where measures of novelty and relevance are 
considered useful in some way. It is replaceable in the sense that another agent that performs the same 
analysis, but more effectively, could be brought in to take over. This form of loose coupling (Orton & 
Weick, 1990; Weick, 1976) allows for the rise of mutations at both the local (agent) and system 
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(multiagent) levels, thus allowing gradual evolution toward increasingly sophisticated systems that may 
eventually approach the effectiveness of a highly skilled human teacher. 

What, then, are the implications of the preceding argument for a “generalized intelligent framework” like 
GIFT? More precisely, how can we, as a community of ITS researchers and developers, possibly move 
forward from our current world of “domain-specific, unique, one-of-a-kind, largely domain-dependent 
solutions focused on a single pedagogical strategy” (Sottilare, Brawner, Goldberg & Holden, 2012:1) 
toward a future of open, domain-independent systems with shareable, reusable tools and components, 
efficient authoring, transportable learner models, cross-platform functionality, and so forth. Given our 
rapidly evolving technological environment (e.g., the sudden ubiquity of smartphones and tablets, the 
explosion of massive, text-based knowledge representations in the Semantic Web, the magnetic attraction 
of social media such as Facebook and YouTube, etc.), it seems unlikely that a single, intelligent tutoring 
solution will ever be more than temporarily useful. Rather, it seems what we can look forward to, and 
should build toward as a community of practice, is some evolving collection of workable, partial, and 
loosely coupled solutions, which, while provisional, are built in such a way that they can evolve both with 
and apart from each other. Specifically, the recommendation is that we begin to think seriously about the 
adoption of a common ACL such as KQML (Finin, Fritzson, McKay & McEntire, 1994), FIPA-ACL 
(O’Brien & Nicol, 1998), or JADE (Bellifemine, Caire, Poggi & Rimassa, 2008) as the basis for a new 
generation of agent-based intelligent learning systems that are capable of autonomous cooperation 
(Hülsmann, Scholz-Reiter, Freitag, Wucisk & De Beer, 2006; Windt, Böse & Philipp, 2005). Importantly, 
because the contributing agents can have their own internal databases and algorithms, we can move in this 
direction without wholesale reengineering of our existing systems. Rather, once we agree on a common 
ACL and begin to build a shared ontology (which can occur incrementally), then we can “simply” 
encapsulate our existing (and evolving) systems in wrappers that allow these systems, whatever their 
function, to take part in whatever communities may arise, both adding and receiving value, in ways that 
are now only dimly imaginable. 
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